ErbB4 reduces synaptic GABAA currents independent of its receptor tyrosine kinase activity.
نویسندگان
چکیده
ErbB4 signaling in the central nervous system is implicated in neuropsychiatric disorders and epilepsy. In cortical tissue, ErbB4 associates with excitatory synapses located on inhibitory interneurons. However, biochemical and histological data described herein demonstrate that the vast majority of ErbB4 is extrasynaptic and detergent-soluble. To explore the function of this receptor population, we used unbiased proteomics, in combination with electrophysiological, biochemical, and cell biological techniques, to identify a clinically relevant ErbB4-interacting protein, the GABAA receptor α1 subunit (GABAR α1). We show that ErbB4 and GABAR α1 are robustly coexpressed in hippocampal interneurons, and that ErbB4-null mice have diminished cortical GABAR α1 expression. Moreover, we characterize a Neuregulin-mediated ErbB4 signaling modality, independent of receptor tyrosine kinase activity, that couples ErbB4 to decreased postsynaptic GABAR currents on inhibitory interneurons. Consistent with an evolving understanding of GABAR trafficking, this pathway requires both clathrin-mediated endocytosis and protein kinase C to reduce GABAR inhibitory currents, surface GABAR α1 expression, and colocalization with the inhibitory postsynaptic protein gephyrin. Our results reveal a function of ErbB4, independent of its tyrosine kinase activity, that modulates postsynaptic inhibitory control of hippocampal interneurons and may provide a novel pharmacological target in the treatment of neuropsychiatric disorders and epilepsy.
منابع مشابه
The Neuregulin-1 Receptor ErbB4 Controls Glutamatergic Synapse Maturation and Plasticity
Neuregulin-1 (NRG1) signaling participates in numerous neurodevelopmental processes. Through linkage analysis, nrg1 has been associated with schizophrenia, although its pathophysiological role is not understood. The prevailing models of schizophrenia invoke hypofunction of the glutamatergic synapse and defects in early development of hippocampal-cortical circuitry. Here, we show that the erbB4 ...
متن کاملErbB4-neuregulin signaling modulates synapse development and dendritic arborization through distinct mechanisms.
Perturbations in neuregulin-1 (NRG1)/ErbB4 function have been associated with schizophrenia. Affected patients exhibit altered levels of these proteins and display hypofunction of glutamatergic synapses as well as altered neuronal circuitry. However, the role of NRG1/ErbB4 in regulating synapse maturation and neuronal process formation has not been extensively examined. Here we demonstrate that...
متن کاملNeuregulin induces GABAA receptor beta2 subunit expression in cultured rat cerebellar granule neurons by activating multiple signaling pathways.
The GABAA receptor beta subunit is required to confer sensitivity to gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. In previous studies we demonstrated that the growth and differentiation factor neuregulin 1 (NRG1) selectively induced expression of the beta2 subunit mRNA and encoded protein in rat cerebellar granule neurons in culture. In the present report we...
متن کاملErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation.
Neuregulin 1 (NRG1) is a trophic factor that acts by stimulating ErbB receptor tyrosine kinases and has been implicated in neural development and synaptic plasticity. In this study, we investigated mechanisms of its suppression of long-term potentiation (LTP) in the hippocampus. We found that NRG1 did not alter glutamatergic transmission at SC-CA1 synapses but increased the GABA(A) receptor-med...
متن کاملMaintenance of GABAergic activity by neuregulin 1-ErbB4 in amygdala for fear memory.
Inhibitory neurotransmission in amygdala is important for fear learning and memory. However, mechanisms that control the inhibitory activity in amygdala are not well understood. We provide evidence that neuregulin 1 (NRG1) and its receptor ErbB4 tyrosine kinase are critical for maintaining GABAergic activity in amygdala. Neutralizing endogenous NRG1, inhibition, or genetic ablation of ErbB4, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 48 شماره
صفحات -
تاریخ انتشار 2013